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Abstract
Understanding how to obtain image plane contrasts of 
a part in 10 billion requires a wide range of models, 
including ray-trace and polarization ray-trace 
analyses,  Fourier Analyses, scalar and vector 
propagation, accurate representations of masks and 
stops, closed-loop pointing and wavefront control 
systems, thermal and mechanical models of the 
telescope and structure, and a means to bring the 
information derived from these models into an error 
budget that is traceable to engineering requirements.

TPF-C Facts
An Earth-like planet is 10 billion times fainter than its parent star. A Jupiter-like planet is 1 billion 
times fainter than its parent star.

In the High Contrast Imaging Testbed in Bldg 318, we control scattered broad-band light to  1 part 
per billion. 

TPF-C does NOT need supersmooth optics.  HST or VLT class optics are adequate.  Deformable 
mirrors in the coronagraph instrument flatten the wavefront.

TPF-C must be very stable for hours at a time. Modeling indicates the challenging requirements 
can be met.
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by > 2 orders of magnitude over  
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Static Budget

PM Gravity Sag

TBD nm

Small Optics Quality

1 nm r.m.s surface

Reflectivity Uniformity

1e-3 – 1e-4 r.m.s.

Mask Transmission 
Errors

1e-3 

Dynamic Errors

PM Thermal Bending

0.4 nm r.m.s (focus, astig, coma)

5 pm (Spherical and higher)

Motion of SM relative to PM

25 nm LOS, 30 nrad tip/tilt

Motion of Small  Optics

10 nm, 10 nrad r.m.s.

Pointing

Rigid Body Pointing

4 mas/axis r.m.s.

Spot Position on Mask

0.3 mas/axis r.m.s.

Static Contrast: 5e-11

Contrast Stability: 2e-11

4 mas rigid 
body 

pointing

Fold mirror 1: 
rms static surf =0.85nm
Thermal: 10nrad, 100 nm
Jitter: 10 nrad, 10 nm

PM shape: (Thermal and Jitter)
z4=z5=z6=z8=z10=0.4 nm
z7=0.2 nm, z11=z12=5 pm

Mask centration:
offset=0.3 mas
amplitude=0.3mas

Secondary:
Thermal: Δx=65 nm, 
Δz=26 nm,
tilt=30 nrad
Jitter: 20x smaller

Laser metrology:
ΔL=25nm
Δf/f=1x10-9

Coronagraph optics motion:
Thermal:10nrad, 100nm
Jitter: 10 nrad, 10 nm

Mask error = 
5e-4 at 4 λ/D

zTable 4: Rolled up Dynamic Contrast Contributors
Perturbation Contributor Nature Contrast Fraction
Structural Defomation Beam Walk Thermal 8.29E-13 16.12%

Jitter 6.33E-13 12.31%
Aberrations Thermal 3.28E-14 0.64%

Jitter 4.43E-17 0.00%
Bending of Optics Aberrations Thermal 8.60E-13 16.72%

Jitter 8.60E-13 16.72%
Pointing Beam Walk 1.29E-12 25.10%

Image Motion 9.04E-14 1.76%
Mask Error 5.46E-13 10.63%

SUM 5.14E-12
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Figure 3. Models used to calculate static and dynamic contrast.
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Figure 2. Pointing control. The CEB assumes a nested pointing control system. Reaction wheels and/or a Disturbance Reduction System  control rigid 
body motions to 4 mas (1 sigma).  The telescope secondary mirror tips and tilts to compensate the 4 mas motion but has a residual due to bandwidth 
limitation of 0.4 mas.  A fine guiding mirror in the SSS likewise compensates for the 0.4 mas motion leaving 0.04 mas uncompensated.
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